Preparation of porous ZrO₂/Al₂O₃ macrobeads from ion-exchange resin templates

M.-L. Wang · C.-H. Wang · W. Wang

Received: 2 July 2010/Accepted: 3 September 2010/Published online: 15 September 2010 © Springer Science+Business Media, LLC 2010

Abstract In this work, we will report a method to prepare porous ZrO₂ and ZrO₂/Al₂O₃ macrobeads using cationexchange resins with sulfonate groups as templates. The preparation process involves metal ion-loading, ammoniaprecipitation, and calcination at an appropriate temperature. Several characterization methods, such as TGA, XRD, SEM with EDX, TEM and N₂ adsorption and desorption, were used to characterize the ZrO₂ and ZrO₂/Al₂O₃ macrobeads. The results showed that the porous structures of the resin templates were negatively duplicated in the two kinds of macrobeads. We found the following interesting results: (1) The ZrO₂/Al₂O₃ macrobeads are composed of tetragonal zirconia nanocrystals that are more technologically important, while the pure ZrO₂ macrobeads consist of a mixture of tetragonal and monoclinic zirconia. (2) In the ZrO_2/Al_2O_3 macrobeads, the size of ZrO₂ nanocrystals is about 5 nm smaller than that (about 19 nm) found in the pure ZrO_2 macrobeads. (3) The ZrO₂/Al₂O₃ macrobeads have more mesopores and, therefore, have a larger surface area than the pure ZrO₂ macrobeads. These oxide macrobeads will have potential applications in catalysis by taking advantage of their macrobeads shape and pores structure.

Introduction

Materials based on zirconium dioxide (ZrO_2) are very important because of their wide applications in ceramics, oxygen sensors, catalysts, and catalyst supports [1–4].

M.-L. Wang · C.-H. Wang · W. Wang (🖂)

The Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China e-mail: weiwang@nankai.edu.cn Since ZrO₂ has both acid and base active centers on its surface [5], it has been used as a key active component of some catalysts for various processes such as dehydration, isomerization, alkylation, and selective and full oxidation of hydrocarbons [6-8]. Conventionally, ZrO_2 used in catalysis process is often in the form of powders [1-8]. However, it is trivial to completely remove catalyst powders from the products after the reaction and the performance of products could be strongly affected by residual catalysts. Therefore, ZrO₂ porous macrobeads with sizes over a couple of hundred micrometers will be a good candidate. This is because porous macrobeads can not only provide a high surface area with more ZrO₂ active centers on the pore surface, but also be easily removed from product solution by a simple filtration process. Although several efforts have been reported to prepare porous metal oxide macrobeads using the corresponding alkoxides as precursors [9-19], the study on ZrO_2 is still limited [20]. One of the reasons for the failure in preparation ZrO_2 porous macrobeads is that zirconium alkoxide is too reactive to be handled. Recently, Konishi et al. [21] successfully prepared porous ZrO₂ monoliths through a relatively complicated method, which involves alkoxy-derived solgel process, phase separation and solvothermal process. The precursor they used is zirconium propoxide. During preparation, N-methylformamide should be added to the reaction system to slow down the gelation of ZrO₂, so the reaction conditions had to be carefully controlled. The prepared ZrO₂ products are cylindrical monoliths. Therefore, it is still a challenge to prepare porous ZrO₂ macrobeads by means of a relatively simple method using other zirconium compounds as precursors, which can be easily handled, like ZrOCl₂.

Nowadays, it is well-known that ZrO_2 can possess three crystalline phases, i.e., cubic, tetragonal and monoclinic

polymorphs [22]. The monoclinic phase, which is stable at room temperature, is transformed to tetragonal at 1170 °C, and then to cubic at 2370 °C. But the technologically more important cubic and/or tetragonal zirconias are not stable in bulk forms at ambient conditions. To obtain cubic or tetragonal zirconia that is stable at room temperature, two methods have been explored. One is to incorporate Mg^{2+} , Ca^{2+} , and Y^{3+} , which are compatible with ZrO_2 , into zirconia crystal lattice to minimize the free energy of cubic and tetragonal phases [23, 24]. Another method is to decrease the particle size of ZrO₂ crystals to the 30 nm range [25]. It is found that adding even small amounts of Al_2O_3 , which are not compatible with ZrO_2 below 1400 °C, can limit the size of ZrO₂ crystals [23]. Therefore, ZrO₂ nanocrystals in some mixtures of ZrO₂/Al₂O₃ have been prepared in the form of pure tetragonal phase.

We have previously demonstrated a simple route to prepare hierarchically porous Fe₂O₃, Al₂O₃, and TiO₂ macrobeads, using macroporous cation-exchange resins with sulfonic acid groups as templates and the corresponding metal salts of inorganic acids as precursors [26]. This method has at least three advantages: (1) The templates and precursors, are all commercially available and cheap in price. (2) The metal ions are fixed into the pore surface of the resins via counterion interaction that is strong enough to endure water washing, therefore the excess metal ions in the inner part and at outer surface of resin can be removed by washing. As a result, the obtained metal oxide macrobeads are free of a dense cover at the macrobead surface. (3) The crystalline framework in the obtained macrobeads will have high structural stability at higher temperature and/or other rigorous conditions. Herein, we extend this method to the preparation of ZrO_2 porous macrobeads. The as-prepared macrobeads are composed of ZrO₂ with two crystalline phases, monoclinic and tetragonal, and the surface area of the porous macrobeads is about 40 m²/g, which is not as high as those reported in the Ref. [27]. The new challenge is to prepare ZrO₂ porous macrobeads with a pure tetragonal crystalline phase and higher surface area. In our work we easily achieve this goal by mixing Al₂O₃ with ZrO₂. In order to prepare the ZrO_2/Al_2O_3 macrobeads, the $Al(H_2O)_6^{3+}$ ions will be firstly introduced into the resin via an ion-exchange process. After an ammonia treatment the Al^{3+} ions in the resin will be transformed into an oligomeric Al(OH)₃ precipitate and then $(ZrO)^{2+}$ ions are reloaded into the resin pores. After another ammonia treatment, we can obtain (Zr(OH)₄)/Al(OH)₃/resin composite beads. Finally, we prepare the targeted ZrO_2/Al_2O_3 porous macrobeads by calcination at high temperature. Our findings show that the crystalline structure, pore structure, and surface area of the ZrO₂ macrobeads will be improved after mixed with Al_2O_3 .

Experimental

Materials

A strongly acidic cation-exchange resin with sodium sulfonate group and spherical morphology (D72, 30-50 mesh) was used in this work. It was purchased from the Chemistry Plant of Nankai University. The charged form of the resin was reversed from Na⁺ to H⁺ by a treatment with 10 wt% HCl solution. Typically, D72 was made by sulfonation of porous polymer beads which are composed of poly (styrene-co-divinylbezene). The divinylbenzene was used as cross-linking agent and the degree of cross-linking is about 8%. Ion-exchange capacity of D72 is 4.4 mmol/g or 1.4 mmol/mL. The inner structure of D72 was shown in our previous work [26]. Typically, D72 beads have amorphous walls and pores with size distribution of 10-600 nm. The precursor solutions used for the preparation of the oxide macrobeads were ZrOCl₂ and Al(NO₃)₃ aqueous solutions.

Preparation of macrobeads

The pure ZrO_2 macrobeads were prepared via the following steps: $(ZrO)^{2+}$ ion-loading, ammonia-precipitation and calcination. Typically, 10 g of the H⁺-type ion-exchange resins, D72, were treated with 300 mL of an aqueous solution of $ZrOCl_2$ (0.1 M) to replace H⁺ with $(ZrO)^{2+}$ to form a $(ZrO)^{2+}$ –D72 complex. The composite resins were washed well with deionized water and then treated with 30 mL of an ammonia solution (1.0 M) to precipitate $(ZrO)^{2+}$ as oligomeric $Zr(OH)_4$ in the pores of the D72 resins. Then the obtained $Zr(OH)_4$ –D72 composite resins were dried in air at 120 °C for 2 h and finally calcined at 600 °C for 8 h.

The preparation of the mixed ZrO₂/Al₂O₃ macrobeads involved Al³⁺ ion-loading, ammonia-precipitation, and the (ZrO)²⁺ ion-reloading, ammonia-precipitation and final calcination steps. Generally, 10 g of D72 resins were treated with 300 mL of an aqueous solution of Al(NO₃)₃ followed by thorough water washing. Then 30 mL of the ammonia solution (1.0 M) was added to the $Al^{3+}-D72$ resins to bring about the Al(OH)₃ precipitation in the pores of the D72 resins. The Al(OH)3-D72 composite resins were washed well using a large amount of deionized water. Then 300 mL ZrOCl₂ (0.1 M) were added into the composite resins so the (ZrO)²⁺ ions were reloaded. These $(ZrO)^{2+}$ -Al(OH)₃-D72 resins were again washed with deionized water and then treated again with 30 mL of the ammonia solution (1.0 M). The obtained Zr(OH)₄/Al(OH)₃-D72 composite resins were dried in air at 120 °C for 2 h and finally calcined at 600 °C for 8 h.

Measurements

Thermogravimetric analysis (TGA) was conducted using a NETZSCH TG209 thermoanalyzer in a 10 mL/min nitrogen flow rate and a heating rate of 10 °C/min. The weight contents of Zr and Al in ZrO₂/Al₂O₃ beads were determined by Inductive Coupled Plasma Mass Spectrometry (ICP-MS). The ZrO_2/Al_2O_3 beads were milled and then digested using 1:1 mixture of Nitric acid and Hydrofluoric acid. The Zr and Al contents in the digested sample can be measured by ICP-MS using corresponding inner standard. X-ray diffraction (XRD) experiments were carried out using a Rigaku D/Max-2500 X-ray diffractometer using Cu Ka radiation. The average crystal size of the sample was estimated by the Scherrer's formula [28], which is a technique based on measuring the full width of X-ray diffraction peaks at the half maximum height of the peak (FWHM). The Scherrer's formula is $t = 0.94 \times \lambda/B \times \cos \theta$ where t is the average crystal size, λ is the wavelength of Cu K α radiation, B is the FWHM, and θ is the half of the diffraction angle, 2θ . The contribution to the peak broadening from the instrumental broadening was subtracted by the help of a standard silicon sample, using the formula $B^2 = B_1^2 - B_2^2$, where B_1 is measured peak and B_2 is instrumental broadening contribution. The optical microscopy images were obtained under reflected light mode using an Olympus optical microscope equipped with a digital camera. Scanning electron microscopy (SEM) experiments were conducted on a JEOL JSM-6700F field emission SEM equipped with an energy dispersive X-ray (EDX) spectroscopy analyzer. The samples were coated with gold prior to analysis. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were recorded using a Tecnai-G²20 transmission electron microscope operated at an accelerating voltage of 200 kV. The ultrasonic technique was used to well disperse the milled oxide beads in water/ethanol solution. Several drops of dispersion were deposited on a carbon coated copper grid for TEM measurement. N₂ adsorption and desorption measurements were performed at 77 K using a Micromeritics TriStar 3000 analyzer. The specific surface area was calculated using the Brunauer-Emmett-Teller (BET) method using a linear plot over the range $P/P_0 = 0.06-0.20$. Mesopore volumes were determined from the amount of N_2 adsorbed at $P/P_0 = 0.99$.

Results and discussion

After metal ion-exchange and ammonia-precipitation process, the $Zr(OH)_4$ -D72 and $Zr(OH)_4$ /Al(OH)_3-D72 composite resins were obtained. We firstly determined the calcination temperature of each composite via TGA

characterization. Figure 1 presents the TGA curves of the two composites. They show a complete loss of water and polymer matrix at a temperature of about 600 °C. Their residual weights are about 38% for $Zr(OH)_4/Al(OH)_3$ –D72, and about 19% for $Zr(OH)_4$ –D72. This difference confirms the loading of two metal ions in the former composite. The TGA characterization helps us set the lowest calcination temperature of the two composites at 600 °C to dehydrate the metal hydroxide species as well as to completely remove the polymer template.

To determine the composition of ZrO_2/Al_2O_3 in the macrobeads, we carried out EDX measurement, as shown in Fig. 2. The three peaks in the EDX spectrum correspond to the O, Al, and Zr elements, respectively. No other elements were found. This indicates that the S, C, and N elements in the composite resins were completely eliminated during the calcination. Based on the phase diagram of the alumina–zirconia binary system, alumina and zirconia are immiscible and they do not react below 1400 °C [29, 30]. Therefore, we believe that the macrobeads are composed of a simple

Fig. 1 TGA curves of the $Zr(OH)_4$ –D72 and $Zr(OH)_4$ /Al(OH)₃–D72 composite resins

Fig. 2 EDX spectrum of the ZrO₂/Al₂O₃ macrobeads

mixture of zirconia and alumina that will be further proved in the following XRD characterization.

During preparation of the ZrO₂/Al₂O₃ macrobeads, we used ammonia as the weak base to transform Al^{3+} ions fixed in the pore surface of the resin into Al(OH)₃ precipitate and to simultaneously free the sulfonate group that could further complex with $(ZrO)^{2+}$ ions. Theoretically, 1 mol of $R-SO_3^-$ can exchange with 0.33 mol of Al^{3+} and 0.5 mol of $(ZrO)^{2+}$. So the mole ratio of Zr to Al in the final ZrO_2/Al_2O_3 macrobeads should be 0.5/0.33 = 1.5 if all the $R-SO_3^-$ could be free and further complex with $(ZrO)^{2+}$ after the first ammonia-precipitation process. The result of ICP measurement reveals that the weight contents of ZrO₂ and Al₂O₃ in the final ZrO₂/Al₂O₃ macrobeads are 52 and 47%, respectively. Corresponding mole ratio of Zr to Al is 0.92. The possible reason for less Zr content than theoretical value may be that some of the $R-SO_3^-$ could be wrapped by the Al(OH)₃ precipitate after addition of ammonia into the Al³⁺ loaded resin. Clearly, those wrapped sulfonate group can not be complexed further with any $(ZrO)^{2+}$.

Figure 3 shows powder XRD patterns of the as-synthesized metal oxide products. For the ZrO_2/Al_2O_3 macrobead, there are four broadened peaks centered at about $2\theta = 30.1^\circ$, 34.9° , 50.2° , and 59.6° , respectively, and they correspond to (111), (200), (220), and (311) lattice planes of tetragonal zirconia. The appearance of these peaks indicates that the macrobead is composed of almost pure tetragonal phase of crystalline zirconia. However, no peaks can be assigned to Al_2O_3 crystals, implying an amorphous or poorly crystalline structure formed. The amorphous alumina phase is also reported in the powdered mixtures of ZrO₂ and Al_2O_3 [31]. The average size of the zirconia

Fig. 3 XRD patterns of the ZrO₂ and ZrO₂/Al₂O₃ macrobeads, with the Miller index of tetragonal zirconia indicated by *number* and diffraction peaks of monoclinic zirconia indicated by *asterisk*

crystals, estimated according to the Scherrer's formula [28], was 4.9 nm. On the other hand, the XRD pattern of the ZrO_2 macrobeads exhibits three strong peaks together with several relatively weak peaks. According to JCPDS cards (No. 17-0923 and 37-1484), the strong peaks can be attributed to the diffractions of the (111), (220), and (311) planes of tetragonal zirconia crystals, respectively, and the other weak peaks can be assigned as diffraction peaks of monoclinic zirconia. The results show that the ZrO₂ macrobeads are composed of a mixture of two different crystalline phases, namely tetragonal and monoclinic zirconia. Based on the Scherrer formula and the diffraction peaks of (111) crystal plane, we estimate the size of the ZrO₂ crystals to be 15 nm, which is larger than that found in ZrO₂/Al₂O₃ macrobeads. Garvie and Gross [25] have reported that ZrO₂ can be stabilized in the tetragonal crystal structure at room temperature when its size decreased below a critical size of 30 nm, due to the lower surface energy of tetragonal structure compared to the monoclinic structure. The ZrO2 macrobeads, with their average nanocrystals size of 15 nm, still contain some monoclinic crystals. This may be explained by the fact that there are some crystals with sizes over 15 nm, even 30 nm, in the ZrO₂ macrobeads. When the size of zirconia crystals decreases to 5 nm in the ZrO₂/Al₂O₃ macrobeads, however, all the zirconia crystals are stabilized in the tetragonal form.

After calcination of the corresponding metal hydroxideresin composite macrobeads, Zr(OH)₄-D72 and Zr(OH)₄/ Al(OH)₃-D72, the as-synthesized metal oxides well maintained the bead shape of the parent resin, which was evidenced by optical microscopy observations. Figure 4a and b exhibits typical images of the metal oxide macrobeads, from which we can see that they both have good bead morphology with few cracks. The corresponding size distributions of the macrobeads and the parent resin, D72, are shown in Fig. 4c. They all have similar distributions implying a conformable change from composite beads to oxide ones. The average size of the ZrO₂/Al₂O₃ beads $(\sim 450 \ \mu\text{m})$ is the same as that of D72 ($\sim 450 \ \mu\text{m}$), while the average size of the ZrO₂ macrobeads decreased to \sim 330 µm. The results show that shrinkage occurred in the preparation of the lower loaded ZrO₂ macrobeads, but not in the preparation of the ZrO₂/Al₂O₃ macrobeads. The reason for the shrinkage may be the crystallization and Oswald ripening of ZrO₂ particles during calcination. For the preparation of the ZrO₂/Al₂O₃ macrobeads, however, the amorphous Al₂O₃ phase hindered the Oswald ripening of ZrO₂ nanocrystals, thus the size and packing of the nanocrystals kept almost unchanged even at high calcination temperature.

SEM images in Fig. 5 show the pore structure of the two macrobeads. Both macrobeads have relatively thick and

rough frameworks as well as a large amount of voids between and within these frameworks. The pore size between frameworks is in the range of 5–50 nm. Our SEM

Fig. 4 Optical images of the ZrO_2 macrobeads (a) and the ZrO_2/Al_2O_3 macrobeads (b). c The size distributions of the two macrobeads together with that of the parent resin templates, D72

characterization shows that the pore size in the parent D72 resin distributes in the range of 10–600 nm (images not shown) [26]. The porous characteristic of the metal oxide beads is similar to the D72 resin, indicating that the main porous feature in the metal oxide beads is negatively duplicated from that of the D72 template. However, the pore size might be altered during the calcination process because of the chemical and physical changes from metal hydroxide/resin composites into metal oxides. In addition, the pores within the frameworks are much smaller in size than those between the frameworks, therefore, it is hard to clearly identify those pores by SEM due to the resolution limitation.

Figure 6 exhibits the typical TEM and HRTEM images of the two oxide macrobeads. In the ZrO_2 macrobeads, the ZrO_2 nanocrystals have a size in the range of 10–30 nm (Fig. 6a, b). Loose packing of these nanocrystals creates voids; however, these voids are relatively irregular in shape as the crystals pack irregularly. On the other hand, the ZrO_2 nanocrystals in the ZrO_2/Al_2O_3 macrobeads have a size of about 5 nm and they are packed in relatively ordered manner (Fig. 6c), so the voids between these crystals look

Fig. 5 SEM images of inner pore structure of the ZrO_2 macrobeads (a) and the ZrO_2/Al_2O_3 macrobeads (b)

more ordered. The size of those voids is approximately 3-7 nm. The fine crystal structure of the ZrO_2 nanocrystals in the ZrO_2/Al_2O_3 mixture is disclosed by the HRTEM image in Fig. 6d showing regular projection lines of the (111) lattice plane of tetragonal zirconia. The average distance between each line is 0.296 nm, consistent with the result of the XRD characterization.

We carefully measured ZrO_2 particles size from over 20 TEM images and obtained size distributions of the ZrO_2 . The results are presented in Fig. 7. The average sizes of the ZrO_2 particles are approximately 19 and 5 nm in the ZrO_2 and ZrO_2/Al_2O_3 macrobeads, respectively. They are very close to the size obtained by the XRD characterization. It is important to note again that after mixed with Al_2O_3 , the size of the ZrO_2 nanocrystals decreased from 19 to 5 nm. The existence of Al_2O_3 is generally thought to be an important factor that hinders the crystal growth of ZrO_2 during the calcination process [25, 32]. The smaller size of the ZrO_2 nanocrystals further makes the tetragonal zirconia phase stable at room temperature in our study.

To determine the surface area and pore structure of the two macrobeads, we carried out N2-sorption measurements. Figure 8 shows the adsorption and desorption isotherms of the ZrO₂ and ZrO₂/Al₂O₃ macrobeads, together with the corresponding pore-size distributions (PSDs). Both isotherms exhibit type III characteristics with a type H3 loop, which is usually indicative of broad size distributions and large mesopores. The existence of large mesopores has been confirmed by our SEM characterization. The PSDs from the adsorption branch of the isotherms using the Barrett-Joyner-Halenda (BJH) method reveal that the mesopore sizes of ZrO_2 and ZrO_2/Al_2O_3 are both in the range of 2-40 nm and pores larger than 40 nm are also observed with small contribution. However, the mesopore volume (V_{meso}) and the specific surface area (S_{BET}) determined from the isotherms differ greatly from each other. S_{BET} is 40.4 m²/g for the ZrO₂ macrobeads and 131.3 m²/g for the ZrO_2/Al_2O_3 macrobeads, while V_{meso} is 0.09 cm³/g and 0.20 cm³/g for the ZrO_2 and ZrO_2/Al_2O_3 macrobeads, respectively. The increases of the S_{BET} and V_{meso} values in

Fig. 6 TEM (a) and HRTEM (b) images of nanocrystals in the ZrO_2 macrobeads. TEM (c) and HRTEM (d) images of ZrO_2 nanocrystals in the ZrO_2/Al_2O_3 macrobeads

Fig. 7 Nanocrystal size distribution of the ZrO_2 (a) and ZrO_2/Al_2O_3 (b) macrobeads

the ZrO₂/Al₂O₃ macrobeads indicate the formation of fine and more voids. In the mixture of Al₂O₃ with ZrO₂, the Al₂O₃ amorphous phase hindered the Oswald ripening of the ZrO₂ nanocrystals during calcination, so those nanocrystals can keep their smaller size and relatively ordered packing and the fine voids between nanocrystals are much more numerous than those in the ZrO₂ macrobeads. This accounts for the higher S_{BET} and V_{meso} in the ZrO₂/Al₂O₃ macrobeads.

Conclusion

In conclusion, we have prepared the two porous ZrO_2 and ZrO_2/Al_2O_3 macrobeads using ion-exchange resins

Fig. 8 a N_2 adsorption–desorption isotherms and b BJH pore-size distributions of the ZrO_2 and ZrO_2/Al_2O macrobeads

as hard templates. After metal ion-loading, ammoniaprecipitation, and calcination, we obtained the targeted metal oxides that keep the bead shape and pore structure of the resin template. For the ZrO₂/Al₂O₃ beads, there are many improvements in properties compared with those of the pure ZrO_2 beads: (1) In the ZrO_2/Al_2O_3 macrobeads tetragonal zirconia nanocrystals, which are more technologically important, are formed, while in the ZrO₂ macrobeads a mixture of tetragonal and monoclinic zirconia is formed. (2) The size of the ZrO_2 nanocrystals decreases from 19 to 5 nm upon mixing with Al₂O₃. (3) The ZrO₂/Al₂O₃ macrobeads have more mesopores with fine structure and, therefore, have a larger surface area than the ZrO₂ macrobeads. The two oxide macrobeads have potential applications in catalysis by taking advantage of their macrobeads shape and pores characteristics.

Acknowledgement We greatly appreciate Nankai University for a grant to support this work.

References

- 1. Garvie RC, Hannink RH, Pascoe RT (1975) Nature 258:703
- 2. León C, Lucía ML, Santamaria J (1997) Phys Rev B 55:882
- Haw JF, Zhang J, Shimizu K, Venkatraman TN, Luigi DP, Song W, Barich DH, Nicholas JB (2000) J Am Chem Soc 122:12561
- 4. Jung KT, Bell AT (2002) Catal Lett 80:63
- 5. Jung KT, Bell AT (2000) J Mol Catal A: Chem 163:27
- 6. Ivanova AS (2001) Kinet Katal 42:354
- Wang XH, Lu GZ, Guo Y, Jiang LZ, Guo YH, Li CZ (2009) J Mater Sci 44:1294. doi:10.1007/s10853-009-3275-4
- Reddy BM, Reddy GK, Ganesh I, Ferreira JMF (2009) J Mater Sci 44:2743. doi:10.1007/s10853-009-3358-2
- 9. Meyer U, Larsson A, Hentze HP, Caruso RA (2002) Adv Mater 14:1768
- 10. Shchukin DG, Caruso RA (2004) Chem Mater 16:2287
- Deshpande AS, Shchukin DG, Ustinovich E, Antonetti M, Caruso RA (2005) Adv Funct Mater 15:239
- Zhang H, Hardy GC, Khimyak YZ, Rosseinsky MJ, Cooper AI (2004) Chem Mater 16:4245
- 13. Zhang H, Cooper AI (2005) Ind Eng Chem Res 44:8707
- Tosheva L, Valtchev V, Sterte J (2000) Microporous Mesoporous Mater 35–36:621
- 15. Tosheva L, Valtchev V, Sterte J (2000) J Mater Chem 10:2330
- Tosheva L, Parmentier J, Saadallah S, Vix-Guterl C, Valtchev V, Patarin J (2004) J Am Chem Soc 126:13624
- 17. Tiemann M (2008) Chem Mater 20:961

- 18. Wang YJ, Price AD, Caruso F (2009) J Mater Chem 19:6451
- Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS (2010) J Mater Chem 20:4512
- Sizgek GD, Griffith CS, Sizgek E, Luca V (2009) Langmuir 25:11874
- Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K (2008) Chem Mater 20:2165
- 22. Joo J, Taekyung Y, Kim YW, Park HM, Wu F, Zhang JZ, Hyeon T (2003) J Am Chem Soc 125:6553
- 23. Garvie RC (1978) J Phys Chem 82:218
- 24. Hu LF, Wang CA, Huang Y (2010) J Mater Sci 45:3242. doi: 10.1007/s10853-010-4331-9
- 25. Garvie RC, Gross MF (1986) J Mater Sci 21:1253. doi: 10.1007/BF00553259
- 26. Wang ML, Wang CH, Wang W (2007) J Mater Chem 17:2133
- 27. Blin JL, Leonard A, Yuan Z, Gigot L, Vantomme A, Cheetham AK, Su BL (2003) Angew Chem Int Ed 42:2872
- 28. Langford JI, Wilson AJC (1978) J Appl Crystallogr 11:102
- 29. Jayaram V, Levi CG, Mehrabian R (1990) Mater Sci Eng A 124:65
- Gao L, Qiu L, Hong JS, Miyamoto H, De La Torre SD, Kakitsuji A, Liddell K, Thompson DP (1998) J Mater Sci 33:1399. doi: 10.1023/A:1004327104481
- Trinh DH, Högberg H, Andersson JM, Collin M, Reineck I, Helmersson U, Hultman L (2006) J Vac Sci Technol A 24:309
- Klimova T, Rojas ML, Castillo P, Cuevas R, Ramírez J (1998) Microporous Mesoporous Mater 20:293